Friday, February 07, 2014

Thoughts on Intelligent Design

Ken Ham and Bill Nye recently debated the question: Is creation a viable model for origin? The whole thing annoyed me, mostly
because Ham didn't stay focused on the heart of the question – the viability of intelligent design – and instead focused on young earth creationism. If you want to have an intelligent discussion on this in a secular, scientific forum, there is a way to do it, and it is not to go into the details of the first few chapters of Genesis, in my humble opinion. Before you get into HOW He created, you need to first establish the evidence that He created at all. There is a boatload of evidence to that point, but that was not the focus of what could have been an incredible opportunity to get people to simply consider the possibility.

It's the first five words of Scripture – “In the beginning, God created ….” I'm not talking about a literal six-day view of creation. I'm not interested in the young-earth debate or proving there was an ark. I want to step back a little further and discuss simply the evidence that there is a God – the simple concept that used to be the foundation of the discussion on Intelligent Design. Are there scientifically observed things about our world that point to intelligence behind their origins? THAT is the question I wish Ham had debated. Ham could have won that debate without question, because the evidence is everywhere.
“Math is the language with which God wrote the Universe.” Galileo
I shall now delve into a tutorial on Chaos Theory and Fractal Geometry. I am not an expert, but a long time ago at a National Council of Teachers of Mathematics convention, someone presented this topic to me, and I realized right then that this was where the heart of the discussion on the existence of God could be mathematically and scientifically founded. I was hooked, and I started doing my own study of the topic. I decided to teach what I could to my algebra students at the time. Before I could do that, I had to teach a lot to myself first. What follows is a simple discussion of a complex subject. If you'll hang with me for a bit, I promise to at least give you something to think about.
“Contrary to the connotations implied by its name, chaos theory does not eradicate the possibility of order. It does not serve to propagate notions of chaos. Chaos theory is really a science about finding organization in seemingly complex systems. It serves to find order in disorder.” Library.advanced.org/12170 Andrew Davenport, Shane Kraynak, Brian Timko
Chaos theory is a branch of mathematics that did not take off until the advent of computers, for it involves millions of calculations that were simply too hard to do by hand. The idea behind chaos theory is finding mathematical order and meaning in seemingly random events. The first real life issue studied involved global weather patterns.

There are several hallmarks to chaos theory.

1. It studies unstable systems. Consider weather patterns. While we may note general tendencies that repeat regionally year by year, there is much that is fundamentally unstable in weather, as evidenced in particular by this year's multiple, unprecedented winter storms. 

2. These systems are sensitive to initial conditions. A meteorologist named Edward Lorentz first identified this in 1961 as he attempted to find mathematical equations that would predict weather patterns. In the midst of a long set of calculations, he re-entered a number in the middle, rounding it as he entered it. Instead of entering 123.0699212, for example, he entered just 123.0699. That tiny difference in the two numbers played out with drastically different final results. Lorentz called this the Butterfly Effect – the idea being that a butterfly flapping its wings in Africa could result in a hurricane in the Caribbean.
For want of a nail the shoe was lost. 
For want of a shoe the horse was lost. 
For want of a horse the rider was lost. 
For want of a rider the message was lost. 
For want of a message the battle was lost. 
For want of a battle the kingdom was lost. 
And all for the want of a horseshoe nail. http://en.wikipedia.org/wiki/For_Want_of_a_Nail
3. These systems are aperiodic (meaning that they never repeat themselves). This is one of the fascinating things about a chaotic system, and it is the reason it appears chaotic. Can something that never repeats itself and doesn't show a discernible pattern actually have mathematical underpinnings? Absolutely!

4. These systems are iterative (meaning that the next answer depends on the previous answer).

Now, I am faced with a dilemma. I could write out more mathematical explanations of the basics of chaos theory, but I think instead that I should skip the middle explanation and move straight to the implications for intelligent design. Normal Euclidean geometry involves points, lines, and planes. Most of us probably recognize the elements of Euclidean geometry from tortured memories of high school. The problem with high school geometry is that lines, planes, squares, and circles tend to be what we humans engineer in this world. But IF there is a God, His world doesn't much fit with Euclidean geometry. Chaos theory gives us a new geometry, Fractal Geometry, that reflects the seemingly random, arbitrary parts of God's vast creation.
“Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line.” Benoit Mandelbrot
Prior to Lorentz and Mandelbrot, there wasn't a lot of discussion about the mathematical design behind our seemingly random world. About the ordered, predictable parts of our world, yes. But the random parts like coastlines, weather patterns, mountain shapes, and patterns of erosion? Not so much. The evolutionary mindset was “out of chaos, order.” In that view,  the Big Bang happened, and primordial soup formed. Eventually random stuff came together, and out of that soup, life began.  Chaos Theory and Fractals give us a new paradigm. Mathematical order, appearing chaotic, results in order – this is a foundational concept in Intelligent Design.

I'll never forget the graph projected onto the screen at that NCTM meeting where I was first exposed to the concept. The speaker entered in an equation on the graphing calculator, gave it an initial seed value, and let it begin plotting its seemingly random points. After a few minutes, a very clear image began to emerge. It was a human face. I realized in that moment that math was indeed the language with which God had written His Universe. And my own personal face as well.

*For a basic demonstration of how mathematical order, appearing chaotic, results in order, check out this Chaos Game.

Fractal fern image found here.

See also Math and Theology.

11 comments:

  1. Hi Wendy,

    I don't think the question was ever "Did God create?" It was "Did God create as outlined in Genesis 1-2?" Your answer to the first question is great, just not related to the Ham on Nye debate.

    Regarding the debate, I find many of the criticisms of Ham on the web disingenuous. He challenged, and his challenge was accepted. If people don't like how he went about it, or thought he was unqualified, then I would encourage them to challenge Nye like Ham did.

    ReplyDelete
    Replies
    1. The question that they were originally supposed to debate seems pretty much "is it viable to say that God created?" That, in my opinion, would have been a more effective question on which to focus.

      Delete
    2. I understand what you are saying. My reading of the context, however, was that Ham responded to Nye's strong criticism of the sort of creationism Ham represents, and, despite the generality of the question, that is what both of them understood the debate to be about. From the little I know, I don't think Nye would really be too worried about someone who believes God created, just as long as they didn't challenge the reigning evolutionary framework.

      Sorry if I'm going on a bit. I'll leave it there.

      Delete
    3. No, worries, Ali. Thanks for interacting.

      Delete
    4. I agree with Ali. Ken has a debate follow-up video on his website explaining his choice in answers, etc. He was in constant prayer throughout the debate, relying on the Holy Spirit to guide his words. I'm thankful for men like Ken who unashamedly defend the authority of the Bible and proclaim the wonders of our God! Maybe you should debate Bill Nye, Wendy, with your idea of the main topic. You really seem to know your stuff! Thanks for sharing your thoughts on this blog. You always keep me thinking and searching the Bible for my view on a subject.

      Delete
    5. This following verse ran through my mind often throughout the debate and gives understanding of Bill Nye: 1 Corinthians 2:14
      But the natural man does not receive the things of the Spirit of God, for they are foolishness to him; nor can he know them, because they are spiritually discerned.

      Al Mohler has an excellent take on the debate: "Bill Nye’s Reasonable Man—The Central Worldview Clash of the Ham-Nye Debate"‏
      http://www.albertmohler.com/?p=30250&utm_source=Albert+Mohler&utm_campaign=8aed725191-Albert_Mohler_Email_June_7_2013&utm_medium=email&utm_term=0_b041ba0d12-8aed725191-307165942

      Delete
  2. I agree with you Wendy. I didn't watch the debate, but I read commentary on both sides and found myself a wee bit annoyed as well for the same reason you did. I wrote about it on my own blog from a different (elementary) angle, but I absolutely LOVE what you taught us here. Thank you. Planning to share.

    ReplyDelete
  3. Thank you so much, Wendy. I love how you communicate so clearly. About half way through your blog a light came on in the attic. I think I've finally discovered why many of my endeavors end up chaotic. My whole life I've been randomly throwing things together and expecting the end result to be order. Mathematics has never been my thing, so I've never really considered that life or things in general needed a formula. The truth of God being the ultimate mathematician was an aha(!) moment for me. I plan to approach life differently henceforth.

    ReplyDelete
  4. Great response to the debate, Wendy! I think this "Connecting the Dots" illustration ties in nicely with your mathematical argument:

    http://www.patheos.com/blogs/exploringourmatrix/2014/02/connecting-the-dots.html

    ReplyDelete
    Replies
    1. That was good, Anne. Thanks for sharing!

      Delete
  5. There are times I think how wonderful it will be in heaven to have a new body. Reading this blog makes me think how wonderful it will be to have a new mind so I can understand complex ideas. Seriously, I may not completely understand the example, but I do get the point that evidence for intelligent design is everywhere.

    ReplyDelete

If you have a negative comment, please be sure to give the benefit of the doubt on motive or tone to the blog author or readers who comment. Anonymous comments are welcomed if you need a safe place to be honest about a burden or concern that you don't feel free to share with your name. Anonymous critical comments will be deleted. If you need to respond critically, please use your name.

Comments automatically close on posts over 30 days old.